Environmental and Ontogenetic Effects on Intraspecific Trait Variation of a Macrophyte Species across Five Ecological Scales

نویسندگان

  • Hui Fu
  • Guixiang Yuan
  • Jiayou Zhong
  • Te Cao
  • Leyi Ni
  • Ping Xie
چکیده

Although functional trait variability is increasingly used in community ecology, the scale- and size-dependent aspects of trait variation are usually disregarded. Here we quantified the spatial structure of shoot height, branch length, root/shoot ratio and leaf number in a macrophyte species Potamogeton maackianus, and then disentangled the environmental and ontogenetic effects on these traits. Using a hierarchical nested design, we measured the four traits from 681 individuals across five ecological scales: lake, transect, depth stratus, quadrat and individual. A notable high trait variation (coefficient variation: 48-112%) was observed within species. These traits differed in the spatial structure, depending on environmental factors of different scales. Shoot height and branch length were most responsive to lake, transect and depth stratus scales, while root/shoot ratio and leaf number to quadrat and individual scales. The trait variations caused by environment are nearly three times higher than that caused by ontogeny, with ontogenetic variance ranging from 21% (leaf number) to 33% (branch length) of total variance. Remarkably, these traits showed non-negligible ontogenetic variation (0-60%) in each ecological scale, and significant shifts in allometric trajectories at lake and depth stratus scales. Our results highlight that environmental filtering processes can sort individuals within species with traits values adaptive to environmental changes and ontogenetic variation of functional traits was non-negligible across the five ecological scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of variability in species trait data on community‐level ecological prediction and inference

Species trait data have been used to predict and infer ecological processes and the responses of biological communities to environmental changes. It has also been suggested that, in lieu of trait, data niche differences can be inferred from phylogenetic distance. It remains unclear how variation in trait data may influence the strength and character of ecological inference. Using species-level ...

متن کامل

Community Functional Responses to Soil and Climate at Multiple Spatial Scales: When Does Intraspecific Variation Matter?

Despite increasing evidence of the importance of intraspecific trait variation in plant communities, its role in community trait responses to environmental variation, particularly along broad-scale climatic gradients, is poorly understood. We analyzed functional trait variation among early-successional herbaceous plant communities (old fields) across a 1200-km latitudinal extent in eastern Nort...

متن کامل

When does intraspecific trait variation contribute to functional betadiversity?

1. Intraspecific trait variation (ITV) is hypothesized to play an important role in community assembly and the maintenance of biodiversity. However, fundamental gaps remain in our understanding of how ITV contributes to mechanisms that create spatial variation in the functional-trait composition of communities (functional b-diversity). Importantly, ITV may influence the perceived importance of ...

متن کامل

Ecological and evolutionary lability of plant traits affecting carbon and nutrient cycling

1. Efforts to understand the effects of plant traits on carbon and nutrient cycling have recently focused on species variation and the potential for species data to improve predictions of past, present and future variation in ecosystems. However, the evolutionary lability of relevant traits among closely related species and the extent of intraspecific variation warrant further consideration. 2....

متن کامل

Revisiting Darwin's hypothesis: Does greater intraspecific variability increase species' ecological breadth?

PREMISE OF THE STUDY Darwin first proposed that species with larger ecological breadth have greater phenotypic variation. We tested this hypothesis by comparing intraspecific variation in specific leaf area (SLA) to species' local elevational range and by assessing how external (abiotic) filters may influence observed differences in ecological breadth among species. Understanding the patterns o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013